
HyperPlace: Extending Web Platform to Build Online Places
for Multiuser Interaction and Collaboration

Thesis Draft for the degree of

Master of Science in Information and Computer Science, UC Irvine

by

Marvin Park

The creation of something new is not accomplished by the intellect but by the play
instinct acting from inner necessity. The creative mind plays with the objects it loves.

 - Carl Jung

ABSTRACT
This paper introduces a new form of networked, participatory medium called hyperplace. It is a
persistent online place for multiple users to interact, play, and collaborate in real time. Each
hyperplace has its own rules, narrative, structure, objects, and characters all created and owned by
individual participants. The structure of hyperplace network is similar to that of the WWW in that they
are topologically connected to each other, forming a decentralized network. Hypertext and hyperplace
networks also share common ideologies, such as freedom of expression, distributed ownership, and
democratized access. In order to demonstrate the feasibility and evaluate the performance of such
networks, I designed and developed the HyperPlace platform—a web-based hyperplace player and a
distributed object management system where users can build and utilize hyperplaces. This platform
lowered the technical entry barriers of authoring new interactive content, and thereby facilitating
creative play. This paper evaluates the prototype and explores more possible contents and applications
that can be developed on this hyperplace-authoring platform.

INTRODUCTION
Recently, users are gaining more control over the contents on Web 2.0 sites. Their creative
participation, which fuels the ecology of Web 2.0, is sometimes driven by self-satisfaction of
themselves, but is mostly motivated by the presence of other people. The users feel more rewarded and
motivated when they receive immediate feedbacks for their participations. Therefore, Web 2.0
platforms not only enable but also encourage online collaboration among users by making Web pages
more interactive to both user input and server response. Catalyzed by the recent advancement of
interactive Web technologies such as AJAX or Flash, the paradigm of Web services is rapidly shifting
from the passive “browse” mode to the active “play” mode1.

However, this collaborative content creation is not new to the realm of virtual worlds. In 1990, Pavel
Curtis created “LambdaMOO2” MUD (Multiuser Dungeon) with the similar philosophy of player
participation even before the development of the Web platform. While it was a text-based virtual world
service, players could create and control every detail of artifacts in their own world without graphical
limitations. This concept of user-created world was adopted to its 3D descendant, “Second Life3”
(2003, Linden Lab). Second Life has created a new possibility of virtual worlds as a new media

1 Yet, Tim Berners-Lee's original vision was of a two-way web that could be written as well as read via the browser. [xxx]
2 http://www.moo.mud.org/
3 http://www.secondlife.com/whatis/

http://www.moo.mud.org/
http://www.secondlife.com/

platform; however, its technical entry barrier is still too high for content creators. In addition to the
fact that it is actually a closed “virtual environment” hosting service rather than an open platform, its
content creation process requires sophisticated skills and knowledge to deal with 3-D object modeling
and proprietary programming language, as discussed later in chapter 3.

In order to encourage a player’s participation in a better way and harness their collective creativity,
virtual world platforms need to lower these technical entry barriers of authoring content. I was
therefore motivated to design a new player-driven virtual world platform, HyperPlace, on which
players can express themselves as easily as they do on the Web. Thus, the HyperPlace was originally
designed as a virtual world platform where players can create and manage their own virtual places,
objects, and characters that constitute a part of the synthetic world.

Since it is basically a virtual world system, I began modifying the source code of the LambdaMOO
server as an initial approach to construct the HyperPlace platform. I found that LambdaMOO was a
very versatile object language interpreter platform. However, it was designed as a centralized system,
and thus inevitably unscalable. I desired to build a scalable and completely decentralized architecture,
the criteria of which were not satisfied by the traditional game (or MUD) engines.

After several revisions, a decentralized system architecture was designed (Figure 1). It actually was a
parallel extension of the Web platform, which is a quintessential distributed system. I later realized
that the original concept of the Web was an “interactive space” [39] similar to the HyperPlace. The
pursuit of the similar vision naturally led to a similarity in the system architecture. The HyperPlace
platform is implemented as an interactive media platform that renders generic multiuser space.
Although it started as a virtual world platform, its possibility is not confined to a specific application.
Chapter 1 defines a new type of media, hyperplace, which runs on the HyperPlace platform.

In many aspects, the HyperPlace is similar to the VRML (Virtual Reality Markup Language) platform.
They both render navigational space using web browsers. However, VRML is just a standard file
format describing a static 3-D model world; therefore, it cannot build a multiuser environment all by
itself. VRML worlds are created in users’ local computers and are not shared. It corresponds to the
HPML file format (illustrated in Chapter 3-3) of the HyperPlace platform. It lacks service protocols
and server components to utilize the representational technology. This is why VRML is not widely used
and the VRML Consortium’s initial vision of building a spatial extension of the Web is not yet realized
[4]. In this regard, the HyperPlace attempted to provide at least a minimum package of tools, including
a file format for representation, network protocols, player application, server components, and an IDE
(Integrated Development Environment). This relatively comprehensive media platform is built to
encourage and facilitate a creative and collaborative play through easy authoring, decentralized
control, and distributed ownership.

In this paper, “hyperplace” refers to a type of interactive media, as defined in chapter 1, and
“HyperPlace” denotes the implemented prototype platform where hyperplace runs.

4 http://www.3d-test.com/interviews/mediamachines_1.htm

http://www.3d-test.com/interviews/mediamachines_1.htm

CHAPTER 1.

CONCEPT OF HYPERPLACE

The original World Wide Web is designed and implemented in order to store, retrieve, interpret,
render, and browse hypertexts [xvii] [xxx]. Hypertext is a network of texts interconnected with
hyperlinks. It is a logical extension of hypermedia—a nonlinear medium of information composed of
text, graphics, video, audio, and hyperlinks5 6. Thus, our existing Web is a hypermedia platform.

Similarly, hyperplace can be defined as an interconnected online place. However, it is not a
straightforward extension of hypermedia or hypertext. While the coverage of both media may overlap
and a few hybrid contents may exist within the boundaries of both media, they are different from a
user’s perspective. Hypermedia (or hypertext) is a medium that conveys information in third person
and hyperplace is a persistent virtual place in which participants can experience in first person. This
chapter develops the concept of a hyperplace from different points of view in order to highlight its
peculiarity as an experiential media.

1-1. Disembedded Place

The term “computer” is no longer termed as an electronic calculator. Its unmatched versatility, which
has reshaped our society, industry, and culture, has now associated it with numerous other concepts in
our linguistic structure. Likewise, the Internet is no longer referred to as a global communication
network that connects computers. It sometimes connotes the entire mode of life after the information
revolution. Yet, our language has not evolved to capture the deconstructive nature of computers and
the Internet, which have taken the places of traditional media by decomposing them through digital
technology. For example, they have separated news from physical media such as paper or distribution
channel. They also have separated music from CDs or tapes. This separation ultimately changed the
way we produce and consume information and content.

I term this separation (performed using IT technology) of digital entities from physical media as
“disembedment.” The disembedment process begins with the process of associating the physical object
or phenomenon with the corresponding digital entities. Through this artificial association, which is
sometimes called “design” or “programming,” the associated part of the physical world is ready to go
online and instantly get connected anywhere. A typical disembedment process is as follows:
programming (software designer) -> encoding (computer program) -> transmission (the Internet) ->
decoding (computer program) -> representation (end user). Thus, the Internet is actually nothing
more than a vehicle that transports encoded data packets at the speed of electrons. In fact, the real
magic of disembedment takes place at both ends of the processes performed by human brains for
thought. Nothing is separated here in practice. Only patterns are discovered and replicated. Therefore,
the concept of separation in the process of disembedment is used metaphorically and differs from the
Cartesian dualism, which separates inseparable unity of mind and body (or software and hardware).

By considering this metaphorical concept of disembedment, hyperplace can be simply defined as “a
place disembedded from the physical place.” This does not signify that a hyperplace should be a
replica of physical place. As news can exist without newspaper, it emphasizes structural similarity with
tangible place and physical absence of it.

Then, what is the abstract "place" separated from the physical world7? A human geographer Yi-Fu

5 By convention, the term "hypertext" is often used where the term "hypermedia" might seem appropriate.
6 http://en.wikipedia.org/wiki/Hypermedia
7 Dictionary definition of place, "a location in space" is not separated from the physical world.

http://en.wikipedia.org/wiki/Hypermedia

Tuan defined place as "the center of felt value where biological needs, such as those for food, water,
rest, and protection, are satisfied." [i] The concept of place is often derived from more axiomatic and
abstract concept, "space." Places are located in spaces, but not all spaces are places. Space is often
associated with openness, freedom, anonymity, and threat, while a place is more about security,
stability, character, nuance, history, and identity. [i] [iv] What begins as undifferentiated space
becomes place as we get to know it better and endow it with value. [i] Places are imbued with social
meanings, but the concept of space has nothing to do with experience. [ii]

Most qualities (or felt value) that identifies a place come from embodied experience of living in a
physical place. Experience is a keyword to understand the various modes through which a person
knows and constructs a reality. [i] Hyperplace provides a disembedded experience of being in a place
with participants, and the sense of "being" somewhere is reinforced by the illusion of moving through
space. [iii]

1-2. Mediated Collaborative Place

When people want to do something together, either work or play, they usually flock together in a place.
Thus, collaboration8, collaborative work or play, literally takes "place." The place for collaboration does
not need to be a location of physical space. For example, Google docs9, a web-based office application,
is a good example of a mediated collaborative (work)place where every online co-authors can see who
is online and who is editing an open document in real-time. In the case of online collaboration, the
simultaneous presence of more than one person creates tension and a sense of belonging, which
eventually forms the "sense of place." In terms of user experience, a non-delayed response is critical to
acknowledge the presence of other people. For this reason, a telephone conversation is known to create
a sense of place that comes from an embodied experience of face-to-face communication [iv]. This also
explains why occasional exchange of emails or wiki-based collaboration seldom creates such a sense of
place while we feel the sense of place with every chat session in a chat room or an instant messenger
window.

The presence of other people is a decisive factor that regulates our behavior in a collaborative place, as
Steve Harrison and Paul Dourish put it, “the sense of other people's presence and signs of their activity
allow us to structure our own activity, seamlessly integrating communication and collaboration
ongoingly and unproblematically. Similarly, spatially-organized collaborative environments present
views of other people and their actions within the same environment which represents activity and
holds the artifacts of work. [ii]”

Since it is a real-time interactive medium, hyperplace can be defined as a mediated collaborative place,
where timely interaction forms the "sense of place" and simultaneous presence of people defines the
mode of activities. This concept of collaborative place is akin to Giddens' "locale", as the place where
interaction occurs [v]. According to Giddens, locale is also applicable to multiple scales of interaction.
At a much larger scale, locale may refer to groups of people and how they interact with one another
across the landscape. Combined both with the co-presence of actors and with the communication
established between them, the properties of a locale, give a "contextuality" to the interactions that
occur in it.

1-3. Building Block of Virtual Worlds

Virtual words, in general, are not games even though some of them, such as Ultima Online (Origin
Systems, 1997), EverQuest (Sony Online Entertainment, 1999), and World of Warcraft (Blizzard

8 The term "collaboration" usually refers to a team work or cooperative process for business project, but, in this context, it
is also used as collaborative play as well.

9 http://docs.google.com/

http://docs.google.com/

Entertainment, 2004), are popular massive multi-player online games. Virtual worlds are a medium
through which many services (games included) might be delivered. [vi] As a first-person experiential
medium, virtual worlds are closely related to the notion of hyperplace. For example, Second Life users
are called "residents", which underscores how a "sense of place" is fundamental to Second Life. [vi]
Richard A. Bartle, a co-writer of the first MUD, defined "virtual worlds" simply as "places" like
following:

“Virtual worlds may simulate abstractions of reality; they may be operated as a service; creating them
may be an art; people may visit them to play games. Ultimately, though, they are just a set of locations.
Places. People go to places, do things there, and they go home.” [vii]

From the perspective of virtual world designers, hyperplace can be used as a representational unit for a
virtual world platform just like what hypertext is for the Web platform. In this sense, a hyperplace is
defined as a building block of virtual worlds. However, simply connecting hyperplaces does not
automatically constitute a virtual world, which requires a minimum global infrastructure, such as
currency and economic/social systems, for example. Hyperplace is designed as a network of
individually owned, programmable online places, and therefore, it does not include any default global
settings for a specific purpose. Each hyperplace does not necessarily share common rules or policies
with neighboring hyperplaces. Hence, a virtual world programmer needs to program his/her own
global settings and objects to build a coherent network of hyperplaces. (See chapter 3-5)

CHAPTER 2.

IDEOLOGIES OF THE INTERNET, WEB 2.0, AND
HYPERPLACE

According to Brian Winston’s model of the “diffusion of technology,” a technical prototype is accepted
as an invention by the operation of a transforming agency called supervening social necessities [viii]. I
assume that this transformation is a resonant process between the ideology (or a comprehensive
vision) behind the invention and the unfulfilled desires (or needs) of society. This does not necessarily
mean that the ideology of an invention is an accurate reflection of the inventor’s vision, which
propelled ideation of his/her scientific competence. In some cases, these ideologies are neither clear
nor intended at the moment of invention, but become manifest by the possibilities they create after
being deployed in a society. My assumption also implies that a technological invention would not
solely fulfill social necessities but would also amplify desire for those necessities by encouraging
specific modes of activity. For example, cell phones might have increased the desire for remote
communication. This amplification of desire is the reason why I called the transformation a resonant
process.

As a newly introduced networked media platform, the historical growth of the Web is a perfect role
model for the HyperPlace platform. Based on the assumptions above, I will explore how the early
Internet sowed the seeds of open communication in the late 20th century, and I will juxtapose this
ideology with the paradox of the recent Web 2.0 movement, which has inherited the traits of its
predecessor but is actually planting seeds of centralized ownership in the early 21st century. The
ideologies of the HyperPlace will become manifest by this juxtaposition. Metaphorically, the
interaction between the new ideology of a technological invention and those ideologies already in
existence in a society is analogous to a process of cultivation; it takes time for a new ideology (seed) to
take root in society (soil), and its development depends on the complex chemical interactions it has
with the soil in which it is growing.

2-1. Ideologies of the Internet before Web 2.0

2-1-1. ARPANET: The seeds of uncensored communication

To explore the evolution of computer networks, we first need to clarify the term “Internet.” The
Internet can be divided into the commonly used “the Internet” and numerous “internets” since several
network protocols are used to communicate between network terminals. The Internet is made possible
by using RFC 768 (UDP)10, 793 (TCP)11 and 1180 (TCP/IP)12 as global standard protocols to build
network applications. This IP network inherited its decentralized structure from its revolutionary
predecessor ARPANET (Advanced Research Projects Agency Network), which was developed by ARPA
of the United States Department of Defense.

One of the most common semi-mythical notions about ARPANET is that one of its most important
design goals was to be resistant to nuclear (or any missile) attack by using a fault-tolerant routing
structure [ix]. The most distinguishing feature of this protocol was the deployment of packet-switching
instead of traditional circuit-switching13. With packet switching, a system could use one
communication link to communicate with more than one machine by disassembling data into

10 http://www.faqs.org/rfcs/rfc768.html
11 http://www.faqs.org/rfcs/rfc793.html
12 http://www.faqs.org/rfcs/rfc1180.html
13 http://en.wikipedia.org/wiki/Circuit_switching

http://en.wikipedia.org/wiki/Circuit_switching
http://www.faqs.org/rfcs/rfc1180.html
http://www.faqs.org/rfcs/rfc793.html
http://www.faqs.org/rfcs/rfc768.html

datagraphs, then gathering these datagraphs as packets. Not only could the link be shared, but each
packet could be routed independently of other packets [x].

This decentralized packet-switching was the very basis of the “end-to-end” (E2E) principle, which
defined the role of a network thereafter [xi]. This E2E principle is still bolstering the open structure of
the Internet and bearing fruit in the form of peer-to-peer (P2P) information/data exchange networks.
Simply put, information processing units (network application programs) exist only at the ends of the
network and the network should provide only transmission service as a blackbox.

What is the ideology behind the E2E principle? It could be interpreted as the birth of a completely
uncensored communication network which ignores the context of communication: Who is sending,
who is receiving, what is being transmitted and for what reason. It is unclear whether this was
intended from the beginning. This may have been an unintended consequence of a technical
limitation; in this protocol, only the sending/receiving terminals can decode a series of wrapped
packets regardless their traveling routes.

2-1-2. Web 1.0: The seeds of democratic access and self-publishing of
information

There is no common terminology to refer to the World Wide Web (WWW) prior to Web 2.0; Web 2.0
was a term coined to refer to a business trend rather than an official technical update of the Web
platform. While the borderline is blurred (or nonexistent), I will refer to the WWW proposed by Tim
Berners-Lee in March 1989 as Web 1.0 when discussing its original design philosophy.

The original purpose of Web 1.0 was to improve the information management system of the CERN
research center [xii]. All the information systems at that time, including Usenet news groups, local file
systems and even help systems, used tree-like hierarchical structures. CERN’s complex research
project had showed that a hierarchical information architecture could not model the real world.

Our perception of the real world, as modeled in the human brain, consists of neurons (nodes) that are
connected to other neurons, thus forming a decentralized neural network. This concept of a neuron-
like network of information had never been implemented before Berners-Lee proposed his
revolutionary hypertext information architecture. All the information systems in place at the time
adopted a tree-like hierarchical structure for Usenet news groups, local file systems, and even help
systems. This structure might have been more acceptable to a society where access to a higher level of
information was restricted to the upper echelons. Although he had only intended to solve the problem
of ambiguous categorization in large-scale information systems [xii], it actually served a greater
purpose. It democratized access to information by providing a direct path to any information node by
technically ignoring the context of access: Wherever you are and wherever you want to go.

Another contribution of Web 1.0 was that it exposed the information from local data storage to a global
network. Hypertext not only democratized information, but also provided a unified interface to
represent and publish information regardless its internal format or location. Tim Berners-Lee wrote in
his proposal that, “the method of storage must not place its own restraints on the information. [xii]”
He also wrote in another book that, “the fundamental principle behind the Web was that once
someone somewhere made available a document, database, graphic, sound, video, or screen at some
stage in an interactive dialogue, it should be accessible (subject to authorization, of course) by anyone,
with any type of computer, in any country. [xiii]” This ideology, summarized in a single sentence,
became a cornerstone of today’s global heterogeneous information network.

2-2. Ideologies of Web 2.0

Web 2.0 is a term which describes a trend in the use of World Wide Web technology and web design
that aims to enhance creativity, information sharing, and, most notably, collaboration among users
[xiv]. These concepts have led to the development and evolution of web-based communities and hosted
services, such as social-networking sites, wikis, blogs, and folksonomies14. The term became noable
and widespread shortly after the first O"Reilly Media Web 2.0 conference in 200415.

2-2-1. Web 2.0: The seeds of user-created media culture

In a podcast interview for IBM, Tim Berners-Lee dismissed the term Web 2.0, saying, “Web 2.0 is of
course a piece of jargon, nobody even knows what it means.” He goes on to note that “it means using
the standards which have been produced by all these people working on Web 1.0. [xv]”

There is evidence that supports his claims. So-called Web 2.0 sites are characterizing themselves with
a list of concepts such as the network effect, social networking, personal media or user created content,
but there is hardly anything truly new in Web 2.0. The network effect as business phenomenon existed
even before Web 1.016. All the other ideas were first implemented around 1995 with the beginning of
the first dot-com bubble. The first social network service Match.com started in 199517; the Web has
always been social without social networking services. The first blog was pioneered in 1994 by Justin
Hall18 and the first Wiki was launched in 199519. Book review pages of Amazon.com have been filled
with user-created feedbacks since 1995.

Thus, it is safe to say that Web 2.0 is just part of an ongoing development process and that it cannot be
divided cleanly from its predecessor. But, we can see a clear trend for so-called Web 2.0 technologies.
Most of the important developments around it have been aimed at enabling a community to create,
modify, and share content in a way that was previously only available to centralized organizations
which bought expensive software packages, paid staff to handle the technical aspects of the site and
create content which was published only on that organization’s site.

These new content creation technologies fundamentally changed the mode of production for the Web
content [xvi]. Web applications and services have become cheaper and easier to implement, and by
allowing the end users access to these applications, a company can effectively outsource the creation
and the organization of their content to the end users themselves. Instead of the traditional model of a
content provider publishing their own content and the end user consuming it, the new model allows
the company's site to act as a centralized portal for users who are both creators and consumers.

For the user, access to these applications empowers them to create and publish content that previously
would have required them to purchase desktop software and possess a greater technological skill set.
For example, two of the primary means of text-based content production in Web 2.0 are blogs and
wikis, which allow the user to create and publish content directly from their browser without any real
knowledge of markup language, file transfer or syndication protocols, and all without the need to
purchase any software. The use of the web application to replace desktop software is even more
significant for the user when it comes to content that is not merely textual. Not only can web pages be
created and edited in the browser without purchasing HTML editing software, photographs can be
uploaded and manipulated online through the browser without the need for expensive desktop image
manipulation applications. A video shot on a standard consumer camcorder can be submitted to a
video hosting site, uploaded, encoded, embedded into an HTML page, published, tagged, and

14 also known as collaborative tagging, social classification, social indexing, and social tagging
15 http://conferences.oreillynet.com/web2con/
16 The term "network externalty" was first presented in a paper by Bell employee N. Lytkins in 1917
17 http://www.match.com/matchus/help/aboutus.aspx
18 http://en.wikipedia.org/wiki/Justin_Hall
19 http://c2.com/cgi/wiki?WelcomeVisitors

http://c2.com/cgi/wiki?WelcomeVisitors
http://en.wikipedia.org/wiki/Justin_Hall
http://www.match.com/matchus/help/aboutus.aspx
http://conferences.oreillynet.com/web2con/

syndicated across the web, all through the user’s browser.

At the end of 2006, Time magazine chose “YOU,” the online collaborator, as its “Person of the Year.”20
This epitomized the user-driven paradigm shift of media culture in 21st century, as harnessed by Web
2.0 technology as the content creation platform. But what, ultimately, will this paradigm shift do?
What ideology is behind this movement? To answer these questions, we need to look at the value of
user-created content from the perspective of Web 2.0 companies.

2-2-2. Web 2.0: The seeds of free labor and centralized ownership

From a business standpoint, the borderline demarcating Web 1.0 and Web 2.0 may be the period
between the first dot-com bubble (roughly 1995–2001) and Google’s IPO (2004), which coincided with
the first Web 2.0 conference (2004). While a lot of the first generation Web 1.0 companies failed due
to a lack of a real business model, Google’s successful search business model reassured and motivated
venture capitalists who needed a new reason to invest in Internet startups. Thus, although it is still
being debated, the dominant opinion about Web 2.0 is that it is actually Internet Investment Bubble
2.0. The feeling is that it is based on a fantasy, as if new Internet startups are somehow grounded on a
completely updated technical platform [xvii].

Unlike Web 1.0, Web 2.0 investors do not need to finance software development or content creation.
There are plenty of robust, enterprise-level open source software packages freely available and the
content is created by unpaid users. Basically, by providing some bandwidth and disk space, any group
of people that can market a site effectively can become a successful Web 2.0 company. The principal
success of the business model comes from the ability of the companies to “harness collective
intelligencexviii [xix],” which means to be monolithic in their branding and ownership of that content,
while opening up the method of content creation to the community.

While it uses quite robust, scalable storage and servers, the real value of YouTube was not created by
the developers of the site, but rather by the people who uploaded videos to the site. However, when
YouTube was bought for over 1.6 billion dollars worth of Google stock in 2006, absolutely none of this
stock was acquired by the video creators. The value produced by users of Web 2.0 services, such as
YouTube, is captured by the investors. From this perspective, every Web 2.0 site’s attempt to harness
collective intelligence may turn out to be a private approbation of community-created content. This is
not fundamentally different from the neoliberal “privatization and commodification of public assets”
or “accumulation by dispossession” presented by David Harvey [xx]. Seemingly voluntary participation
in user collaboration has been exploited; Gabriel Tarde redefined it as “col-labor-ation. [xxi]”

Capitalism, rooted in the idea of Marx’s primitive capital accumulation theory [xxii] and violent
deprivation of (salaried) labor, requires centralized control, without which peer producers have no
reason to share their income with outside shareholders. Capitalism, therefore, is incompatible with the
nature of uncontrollable and decentralized networks. From this perspective, the Web 2.0 business
trend is the return of monolithic online services21 with a mission of destroying the decentralized
nature of the Internet. Information production under Web 2.0 creates a landless information
proletariat ready to provide alienated free labor [xix] for the new info-landlords of Web 2.0 companies.
Thus, Web 2.0 is not to be thought of as a second-generation of either the technical or social
development of the Internet, but rather as a second wave of the capitalist enclosure of the “information
commons. [xxiii]”

20 http://www.time.com/time/magazine/article/0,9171,1569514,00.html
21 AOL (America Online) is a quintessential example of the monolithic, centralized, and bundled online service.

http://www.time.com/time/magazine/article/0,9171,1569514,00.html

2-3. Ideology of the HyperPlace
Commons-based production, such as the Wikipedia project, is a new modality of organizing
production: radically decentralized, collaborative, and non-proprietary; based on sharing resources
and outputs among widely distributed, loosely connected individuals who cooperate with each other
without relying on either market signals or managerial commands [xxiv]. Usenet, email, and early Web
1.0 sites were also rooted in cooperative, decentralized and commons-based systems, owned by
everybody and nobody. Meanwhile, privately owned, lucrative Web 2.0 sites are usually equipped with
exclusive databases, better visual representations and richer content authoring tools in order to attract
more unpaid content creators and audience. If the development of commons-based production
platforms requires wealth from venture capital, the great potential of the Internet as a commons may
remain unrealized. Yet, many open source projects cited as the key innovations in the development of
Web 2.0, such as Linux, Apache, PHP, MySQL, and Python, will become free backbones in building a
genuine, decentralized commons.

The HyperPlace platform aims to be anther open-source tool for commons-based production as well as
being a decentralized commons where users can build places to flock together and create objects to
play with. Commons, in this context, is a particular institutional form of structuring the right to access,
use, and control resources, as opposed to private property [xxiv]. Thus, it does not necessarily involve
the production and consumption of "information" as web sites do. Rather, the HyperPlace platform is
an "experience commons," where users (or players) share the unique moments of interaction. In this
regard, the abstract vision of the HyperPlace is almost identical to that of the original Web 1.0. As Tim
Berners-Lee puts it: “The idea of the Web 1.0 is all about connecting people. It was designed to be as a
collaborative space where people can interact.” [xv] As an open and community-regulated commons
[xxiv], it inherits the philosophical underpinnings of the Internet and Web 1.0, including uncensored
self-expression, democratized access, and decentralized ownership. Its ideologies do not differ from
those of Web 2.0 except for one aspect: It allows the community to own what it creates.

CHAPTER 3

DESIGN AND DEVELOPMENT OF THE HYPERPLACE
PLATFORM

The concept and ideologies of the hyperplace can be specified in terms of a web interface and
networked interactions. As a concept-proof prototype, the HyperPlace platform was implemented
according to this technical specification of the system. This chapter illustrates the requirements,
design strategies and technical details of the prototype project.

3-1. Requirements Analysis

A software platform refers to a software/application framework that allows other software to run22.
According to this definition, a hyperplace network can be defined as a platform that provides a
software framework allowing the execution of user-programmable objects. The ultimate design goal of
the HyperPlace, as a hypermedia platform, is to support and encourage its users to express themselves
with a maximum degree of freedom and creativity. In this respect, perspective content creators (object
programmers) are considered to be the primary target user group for this platform. The following
platform-wide design requirements are oriented to meet the needs of this target group at every stage of
content authoring projects.

3-1-1. Accessibility

Content creators are usually motivated by anticipated positive feedback about their work. From their
point of view, a good platform is one which target audience can readily access. There is no generally
accepted or absolute measures of software accessibility, but subjective experiential accessibility is
associated with quantitative variables such as required time and cost to get the software to a readily
usable state.

In this respect, the most accessible platform can be defined as a platform that meets the following
criteria;

● It runs on average configuration of PC hardware and network bandwidth.

● It must not be bound to specific hardware, OS or commercial application software.

● It should be released as free software.

● Networked contents running on the platform should be instantly delivered to the audience.

3-1-2. Ease of Learning

Authoring of interactive content often requires programming skills and knowledge of a proprietary
programming language, including JavaScript for DHML, ActionScript for Adobe Flash23, Lingo for
Macromedia Director24 and HyperTalk for HyperCard [xxv]. Some virtual world platforms also allow the
programmability of internal objects with players. LambdaMOO is actually a multi-user interpreter
environment that reads and executes objects written in MOO programming language, which was

22 http://en.wikipedia.org/wiki/Platform_(computing)
23 http://www.adobe.com/devnet/actionscript
24 http://www.adobe.com/devnet/director/

http://www.adobe.com/devnet/director/
http://www.adobe.com/devnet/actionscript/
http://en.wikipedia.org/wiki/Platform_(computing

developed by Stephen F. White and Pavel Curtis (1990)25. Second Life players can build and control
their own objects and avatars with Linden Script Language (LSL)26.

For some content creators, authoring interactive content is a great challenge since it requires
programming experience and skills. Even skilled programmers are often discouraged from learning a
new programming language when it is only used for specific purpose. There are two possible ways to
lower this technical barrier to building new interactive content and thereby, to shorten the learning
curve.

The first and most obvious way is to replace textual programming language with a more intuitive
visual programming environment or natural language. In this regard, the "Etoy" visual programming
environment27 has been pre-installed on OLPC XO-1 children's laptops28. The resemblance to
HyperTalk phrases and English sentences (for example, "put the value of card field one of this stack")
may alleviate the stress of learning unfamiliar syntax xxv.

Another approach is to use a general-purpose programming language with a relatively large user base.
In addition to familiarity, programmers can take advantage of existing code and abundant referential
resources that are freely available on the Web. This reusing and sharing of components (or modules)
would not only lower the entry barrier for novice programmers but would also increase the overall
productivity of content authoring.

3-1-3. Decentralization

However easy it may be, users will still be reluctant to express their original idea when their
production is filtered by censorship and restricted by authoritative guidelines. As described in chapter
2, a fundamental ideology of hyperplace is to decentralize ownership of community-created value and
protect the natural ecology of production and distribution of contents from commercial exploitation.
To enable this distributed ownership, each piece of content needs to be physically (or digitally) owned
by its creator and protected by an ownership management system [xxvi].

This requirement can be naturally fulfilled by physically decentralizing the content repository. This
diffusion of storage implies that a hyperplace platform needs to run on a loosely connected
heterogeneous network, which requires predefined shared protocols to allow them to operate together.

3-1-4. Real-time Interactivity

In order to function as a collaborative place as discussed in chapter 1-2, the HyperPlace platform
should be implemented to allow real-time communication. As will be discussed in chapter 3-2, this
technically implies that the connection between a hyperplace client and server should be persistent.

3-2. System Architecture
Considering the resemblance with the Internet (or Web) of the major requirements described above, it
is natural to build a hyperplace platform inheriting legacy web platform. This implies that the
HyperPlace will be implemented under a traditional client-server paradigm and legacy web
applications such as web browsers and web servers will be used. The Web is one of the most accessible
software platforms in that it is hardware independent, OS independent and basically free. While a few
gigantic hub nodes are seemingly reshaping the entire connectivity of the network, the Web is
essentially a decentralized hypertext network. Thus, the philosophy and architecture of the Web
satisfies the requirements of accessibility and decentralization. However, this approach limits the type
of hyperplace contents to web-friendly formats such as DHTML, Java, Flash or Shockwave. Another
limitation of the native web platform is the lack of real-time interactivity, since it is based on

25 http://www.ccs.neu.edu/home/ivan/moo/lm_toc.html
26 http://wiki.secondlife.com/wiki/LSL_Portal_Guidelines
27 http://wiki.laptop.org/go/Etoys
28 http://laptop.org/laptop

http://laptop.org/laptop
http://wiki.laptop.org/go/Etoys
http://wiki.secondlife.com/wiki/LSL_Portal_Guidelines
http://www.ccs.neu.edu/home/ivan/moo/lm_toc.html

connectionless HTTP protocol. A hyperplace platform ought to be built on a bidirectional real-time
network in order to better represent and simulate multi-user interactive space.

AJAX (Asynchronous Javascript and XML) was first considered as a technique to emulate real-time
communication on the web. Although AJAX had been one of the most frequently used web
development techniques to implement data-driven dynamic web pages, its unidirectional socket
connection29 is inappropriate to build real-time environment. Since AJAX is a remote procedure
(method) call implemented over HTTP, clients (web browsers) must initiate every communication
cycle. To emulate server-initiated messaging, clients must periodically pull new data from a server.
There is an inevitable delay between data pulls, and this method becomes highly inefficient when large
numbers of clients are connected to a server. Suppose that a server randomly broadcasts message
randomly and the client pulls the message from the server every 0.5 second. If 1,000 clients are
connected, the server should respond to 120,000 (= 2 * 1,000 * 60) queries per a minute, regardless of
the existence of available messages. If the server can directly broadcast a message to clients, it only
then needs to send it to 1,000 clients when a new message is ready.

To avoid the unnecessary system overload, a genuine (not emulated) full-duplex communication
channel should be established and maintained between web browsers and web servers. Figure 1
illustrates the overall system architecture of the HyperPlace platform that implemented this persistent
socket connection over web architecture.

29 Only clients can open a TCP socket to connect to servers, which means servers can not reach disconnected clients.

Figure 1: System Architecture of the HyperPlace Platform

3-2-1. Hyperplace Player

On the web browser side, a persistent socket connection was implemented using Adobe Flash30 web
plug-in. Flash, a de facto standard plug-in software for multimedia web applications, was chosen
because it can be embedded in all major web browsers31 without sacrificing accessibility32. Besides
maintaining network connection with a server, hyperplace players also interface user input and render
hyperplace content. In other words, every hyperplace-hosting web page should include this component
in its source code and page layout. It retrieves and parses a hyperplace document written in XML
format (described in section 3-3), and requests additional resource files to render an interactive place.
This process resembles the way in which HTML is retrieved and rendered by a web browser.

The HyperPlace player web control provides Javascript interface methods to a hosting web page such
as openPlace, login and logout so that it can be controlled within a standard web programming
environment. Javascript functions in a hosting web page can also be called by the HyperPlace player
through Flash's ActionScript API33. Thus, two-way communication between web content and
hyperplace content is possible at the local function-call level.

3-2-2. Hyperplace Server

On the web server side, hyperplace servers listen to a socket port34 in order to accept incoming
connections from hyperplace players. Once a persistent socket connection is established, it
continuously sends run-time simulation data of hyperplaces to the client with Hyperplace Streaming
Protocol (HPSP), which will be described in section 3-4. The HyperPlace server is entirely written in
PHP script language35 (running in standalone mode) and is tested to be compatible with Microsoft
Windows XP, Mac OS X and Linux without code modification. Since PHP is a widely used web script
language, web server administrators do not need to install and configure a separate server software
package to host hyperplaces on their web servers. Only a PHP-enabled web server36 is necessary to
host hyperplaces.

A hyperplace server running on a single machine can simultaneously simulate and transfer multiple
hyperplaces. This process is similar to how multiple web pages are handled by a web server and web
browsers.

3-2-3. Global Location Service

Hyperplace players and servers can access a specific object in the entire hyperplace network with a
unique ID. However, unlike hypertext documents, objects in a hyperplace frequently move across the
hyperplace network, as will be explained in section 3-5. Given the delay between indexing, the
indexing techniques employed by web search engines are inappropriate as a tool for tracking the real-
time location of dynamic objects.

Global Location Service (GLS) is a globally-accessible yellow page that maintains an association array
to match objects' names with their current physical location. When an object moves to another
hyperplace, its hosting server notifies this movement to the GLS, which in turn updates the object's
location.

GLS is the only centralized server component in the entire hyperplace network, but it is a background
helper service, like the Internet's domain name service, and most users and content creators do not
need to be aware of its existence.

30 Flash Control 9.0 format, compiled by Adobe Flex Builder 3.0
31 Flash format is compatible with Microsoft Internet Explorer, Mozilla Firefox, Apple Safari and Opera web browser.
32 http://www.adobe.com/products/flashplayer/productinfo/systemreqs/
33 ExternalInterface.call function was used for calling Javascript functions from ActionScript
34 Any port other than web ports (80, 8080) and conventional TCP application ports such as 21 (FTP) or 25 (SMTP).
35 PHP version 5.2.5 was used to develop and test the HyperPlace server components.
36 For example, Apache web server was used for the prototype.

http://www.adobe.com/products/flashplayer/productinfo/systemreqs/

3-3. Hyperplace Markup Language

Hyperplace Markup Language (HPML) is an XML document that represents a hyperplace. As
depicted in Figure 2, a hyperplace consists of objects, events and properties, such as permission to
access. Appendix A provides, for reference, XML markup syntax of HPML documents. Objects may
have event handlers that define how they interact with users or other objects. A place object is a root
container object that contains all the current objects in the place. An object contains layers of user
interface elements including bitmap images, vector graphics37, formatted text, video and sound. These
media resources can be stored in any accessible web server and are linked through HTTP protocol.

The main function of hyperplace players is to retrieve, interpret and render this HPML in order to
simulate hyperplaces. Unlike HTML (Hypertext Markup Language), the HPML of a given hyperplace
changes in real time as the status of objects change. Thus, a HPML document needs to be continuously
streamed to hyperplace players, as opposed to being transferred upon requests. A network protocol to
stream HPML is described in section 3-4.

The visual representation of hyperplaces is another key role played by hyperplace players. Objects and
display elements may be represented in either a two-dimensional or a three-dimensional coordination
system depending on the display scheme of the container place. The Hyperplace implemented a 2.5
dimensional isometric coordination system38 instead of three dimensional space as is shown in Figure
3. Figure 4 illustrates the source code for the hyperplace in Figure 3.

37 Vector graphic is implemented using drawing APIs similar to ActionScript graphics APIs.
38 A method of visually representing three-dimensional objects in two dimensions, in which the three coordinate axes

appear equally foreshortened and the angles between any two of them are 120°

Figure 2: Structure of a Place Document

Figure 3: Isometric representation of a 3D hyperplace

Figure 4: Sample HPML source code

3-4. Hyperplace Streaming Protocol
When a user types the URL of a hyperplace or when the avatar object moves to a specific (hyper)place,
a hyperplace player connects to the host of that place and awaits an incoming stream of HPML. This
process involves the connection, authentication, log-on and streaming of data between a client and a
server, all of which is handled by Hyperplace Streaming Protocol (HPSP).

HPSP is a human-readable textual protocol in a simplified format of XML-RPC39. Table 1 illustrates
HPSP command sets for access control, object control, event control and network control. Detailed
descriptions and examples of each command are given in Appendix B.

Category Commands

Access Control policy-file-request, login, logout, enter, bye

Object Control create, delete, view, checkin, checkout

Event Control event

Network Control ready, test

<Table 1: HPSP command sets>

3-4-1. Minimizing streaming data traffic

The seamless representation of a hyperplace requires a stream of HPML with a ratio of 20+ frames per
a second. The simplest way to implement this streaming is to transfer the entire HPML document
whenever an update is ready. However, this brute-force approach is highly inefficient for network
usage. Suppose that a HPML document at a given time is 3 Kbytes and an updated HPML document is
transferred to a client every 0.05 second. At least 480 Kbits/s (20 x 3 x 8) of network bandwidth would
then be consumed by a single client-server connection. ISDN-level (128 Kbits/s) clients can not handle
this stream and the server network would become a bottleneck for the entire system while serving
multiple connections.

One possible way to reduce the amount of traffic is to compress HPML data just as HTTP 1.1 supports
compressed content encoding40. When tested, HPML files were, on average, compressed to 20% of
their original size by gzip41 encoding. While this compression/decompression algorithm requires
5-10% additional CPU time42 for both clients and servers, this time cost is negligible compared to the
savings on network bandwidth and download times.

Another efficient heuristic to minimize data traffic is to transfer only the changed segments of the
HPML from two consecutive frames. This idea is based on the fact that, in most cases, only a small
portion of the document changes at a time. No more than 10% of the original data will typically be
transferred using this method. The comparison of two XML documents43 consumes far less CPU time
than the gzip compression algorithm. A core comparison algorithm was implemented in the
HyperPlace server and it also keeps track of the last HPML document transferred to each client in
order to filter out common lines and distill changed ones.

3-4-2. Handshaking between clients and servers

Even after minimizing the amount of streaming traffic, network congestion time must be considered in
order to synchronize server-side simulations and client-side representations. This synchronization
becomes particularly critical in a multi-user environment where all players in the same place need to
see the "same" world at the same time, even if every client has different network bandwidth. For this
reason, a handshaking technique was used in the actual implementation of the HPSP. When a client is
finished rendering the previous frame and is ready to receive the next frame, a "ready" signal is sent to

39 a remote procedure call protocol which uses XML to encode its calls and returns
40 http://www.w3.org/Protocols/rfc2616/rfc2616.html
41 Gzip encoding/decoding functions are included in both PHP default package and ActionScript library.
42 Actual CPU consumption ratio depends on file size, frequency of operation and the CPU type.
43 Xmldiff open-source algorithm was used for Prototype 1.0

http://www.w3.org/Protocols/rfc2616/rfc2616.html

a server, as illustrated in Figure 5. The server transfers the most recent frame of the hyperplace only to
clients in "ready" state and internally assumes that they will remain "busy" before they explicitly send
the "ready" signal again. Under this handshaking protocol, clients with lower bandwidth represent
hyperplaces with lower frame refresh rate in order to maintain synchronization with other clients.

3-4-3. Real-time Conversation

Since the HyperPlace platform affords full-duplex persistent communication in a web browser, it can
be used to emulate face-to-face conversation, which is often treated as the “gold standard” for real time
interpersonal communication. The HyperPlace players treat a user's single keystroke as an
independent event and sends it to connected servers. The HyperPlace servers dispatch these events to
corresponding agent objects so that they can add (or delete) a new character to existing chat messages.
as depicted in Figure 6. Compared to traditional turn-taking conversation, this "text-as-you-type"
messaging increases the fluidity of real-time interaction, making it easier to figure out a speaker's
intention before each sentence is complete [xxvii].

Figure 5: Handshaking between a client and a server

Figure 6: Each character of chat message appears as a user types it

3-5. Dynamics of Hyperplace Objects
Visual representation of a hyperplace is constructed by individual representation of the objects. Each
object, the unit of ownership, is created and owned by an individual user. It can be an avatar, an NPC
(non-player character) or any hypermedia artifact that can be represented by hyperplace players. This
section covers both internal mechanisms of hyperplace objects and external interfaces to edit them.

3-5-1. Object Programming Interface

As previously discussed, an HPML representation of a hyperplace should reflect real-time changes of
objects such as motions of user agents. Thus, an HPML representation needs to be dynamically
generated by a hyperplace server. This can be implemented using techniques similar to those
employed by web servers to dynamically generate HTML data. Such dynamic HTML is usually
generated by server-side scripts such as Perl, ASP, PHP or JSP, all of which have a wide range of string
manipulation functions and libraries for database and file management.

Among the server-side script languages, PHP was chosen for scripting hyperplaces on consideration of
the requirements for the platform discussed in the section 3-1. PHP is one of the most popular web
script languages44 and has sufficient developer communities to share and reuse source code. Moreover,
it is free, platform-independent and object-oriented. ASP runs only on Microsoft Windows OS and Perl
and JSP are less popular than PHP. Compiler languages such as C/C#/C++/Java were not considered
here because it is much easier to implement code mobility using interpreter languages and this will be
discussed later in this section.

End-users can program their own places or objects on the HyperPlace platform with PHP classes. Each
hyperplace object class has the common interface methods, including "draw" that generates HPML
tags representing the current state of the corresponding object. A "place" class has the same draw
method, but it collects HPML tags from the objects that belong to the place, by executing one after
another, as well as representing the place itself (Figure 7).

The object class library provides content creators with a base class interface for hyperplace
programming. A user created object inherits one of the classes from the common object library (shown
in Figure 8), which should be installed on every HyperPlace server. For example, users can inherit the
"Agent" base class to create their own avatar objects, and they can fill in skeleton methods such as
"draw" or "handleEvent". Appendix C illustrates an example code for custom object programming.
User created object classes also inherit properties from their base classes, which are usually used for
storing HPML properties. Figure 9 illustrates an example of properties and methods that an "Agent"
class inherits from its ancestor classes.

44 http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

Figure 7: Composition of an HPML from objects

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

3-5-2. Simulation of a Persistent World

An interconnected network of hyperplaces forms a persistent world. A persistent world is defined as a
virtual world that continues to exist even after a user exits the world, and that user-made changes to its
state are, to some extent, permanent45. To simulate a persistent world, the HyperPlace servers keep
executing "draw" methods of local place classes in every update period predefined by a configured
frame rate. This execution continues regardless of the existence of clients to serve.

45 http://en.wikipedia.org/wiki/Persistent_world

Figure 8: Hierarchy of PHP Object Library

Figure 9: Inherited Object Interface

http://en.wikipedia.org/wiki/Persistent_world

3-5-3. Locality of Hyperplace Objects

As depicted in Figure 1, the HyperPlace platform is designed to decentralize server components. For
this reason, it does not have a central database or dedicated data storage. Instead, hyperplace object
classes are stored in the local file system of the distributed HyperPlace servers. Each (hyper)place
corresponds to each folder in a server file system. Naturally, objects belonging to a hyperplace are
physically stored in the same folder. While it may not be technically mandatory, this 1:1
correspondence between a logical entity and a physical storage unit helps content creators to more
intuitively understand and build a mental model of the system. The metaphor of a (hyper)place is
incarnated as a folder and the ownership of an object is embodied as a file.

Besides the understandability aspect, this approach—storing objects from the same hyperplace in one
server also reduces overall communication costs due to the locality of interactions in a hyperplace.
People in the same place communicate more frequently with each other than they do with people in
remote places. Objects in close vicinity often interact/interfere with each other while they seldom
influence objects out of their visibility range. Suppose that three avatar objects in the same hyperplace
are stored in three separate servers. Then, every user interaction should go across the network to
synchronize all the servers and clients. Internal network traffic will be exponentially increased as more
distributed objects join the communication. Hence, it is statistically more efficient to keep logically
neighboring objects physically close. If a local object A needs to communicate with a remote object B
for a prolonged period of time, it is more efficient to move A to B's place rather than allowing them to
communicate remotely.

3-5-4. Mobility of Hyperplace Objects

A hyperplace object can instantly move from one place to another either by user control or by internal
logic. Hence, it is a form of mobile agent; defined as “program code and the associated internal state
which can move between computers in a network [xxviii].” In this sense, the HyperPlace platform can
be categorized (and utilized) as a mobile agent framework implemented on the popular web
environment. Like other mobile agents, hyperplace objects maintain their internal state between
migrations. This is implemented using serialization/unserialization methods built-in default PHP
library46. Before a hyperplace object moves to another place, it stores its internal properties to a data
file47. Migration of an object is simply accomplished by moving a code file and a data file to a folder
corresponding to the new hyperplace48. When the HyperPlace server receives an incoming object, it
loads the object class to its memory and unserializes saved properties in order to restore the last state
of the object.

The HyperPlace platform could implement this mobility of hyperplace objects by fully utilizing the
flexibility of PHP as an interpreter language. Compiler languages require complete class definitions at
compile time. To include a new class, the entire application should be terminated and recompiled.
Meanwhile, a PHP application can be programmed so that it dynamically loads classes during runtime
without stopping its execution. For this dynamic class loading, eval method was used to transform an
arbitrary data string into an executable program code49. A PHP magic method "__autoload" was
overridden to actually load dynamically requested class files50.

This code mobility has been studied as a new paradigm for programming in large-scale distributed
settings like the Internet [xxix]. Viewed from a software engineering perspective, this persistence of
memory in a changing environment can be used to develop an AI program that shows more
autonomous behaviors51. For example, a hyperplace object may accumulate historical data acquired

46 http://www.php.net/serialize
47 Base object class in the hyperplace object class library has methods saveProperties and loadProperties to serialize and

unserialize properties of an object.
48 After migration, hyperplace servers keep object files in a backup folder with timestamps for backup purpose.
49 http://www.php.net/manual/en/function.eval.php
50 http://www.php.net/__autoload
51 http://en.wikipedia.org/wiki/Autonomous_agent

http://en.wikipedia.org/wiki/Autonomous_agent
http://www.php.net/__autoload
http://www.php.net/manual/en/function.eval.php
http://www.php.net/serialize

from the servers it has visited and other objects it has interacted with before. If the object's behavior is
determined by the data it has collected, it may be programmed to evolve and adapt itself to its
surroundings.

3-5-5. Real-time programmability

The HyperPlace platform was designed and implemented as an integrated development environment
(IDE) for content creators, as well as an interactive media platform for players. Hyperplace object
classes can be accessible and modifiable by their owners while simulation of the hyperplace continues.
As following Figure 10 shows, the owners of an object can view and check out its code with an IDE
interface of the HyperPlace players. When checked out, the object is in frozen state and it can not be
checked out again; it stops executing its code until it is checked in. As soon as the owners check in the
modified object classes, the objects resume execution and the modifications are applied immediately.

This real-time programmability requires more than dynamic class loading. A loaded class needs to be
"unloaded" from the system memory and "reloaded" to apply changes. However, dynamic unloading of
already loaded classes is not supported by PHP language. For instance, a class ABC can be included
and executed during runtime, but another class with the same name (ABC) is not allowed to be loaded
again. The HyperPlace platform emulated this dynamic reloading of classes by coupling a "prototype"
class with an "instance" class. A prototype class is a normal class source file that users can access and
modify. A coupled instance class is a time-stamped hidden file which the HyperPlace servers actually
load to their memories. Contents of both classes are internally synchronized to be identical but they
have different names. For example, a prototype class ABC may have an instance class ABC.11326 ,at a
given time, where the attached number stands for the last modified time of the prototype class. Since
every modification of a prototype class changes the name of the instance class, it will be reloaded to the
server system. The HyperPlace server maintains an array that associates prototype classes with
corresponding instance classes so that object programmers can access the running instance classes
with the names of prototype classes.

Figure 10: Users can access and modify object code during run-time

CHAPTER 4.

EVALUATION OF THE PROTOTYPE
The requirements of the platform (section 3-1) are the basic criteria for evaluating the implemented
prototype. This chapter evaluates the prototype based on the requirements and identifies technical
problems found during implementation and exhibition. However, overall system performance was not
measured yet since there is no quantitative measures or criteria for this platform. This should be
further considered for the larger scale deployment of the system.

4-1. Requirement Satisfaction
The following analysis shows that the prototype meets roughly 88% of the initial requirements. This
analysis also guides what needs to be done for next revisions to fully satisfy platform requirements.

4-1-1. Accessibility: 100%

The implemented prototype of the HyperPlace platform runs on a legacy web platform without
proprietary software installation. Both the client and server components were tested to run on average
configuration of PC hardware (Intel Pentium 1Ghz-level CPU, 1MB RAM) without delay of
performance. As mentioned in section 3-2-2, they both run on all major operating systems (Microsoft
Windows, Apple Mac OS X, and Linux). With the data compression and handshaking technique
(discussed in chapter 3-4), average streaming rate of data does not exceed the capacity of the
bandwidth52. Thus, the prototype satisfies the conditions to meet the “accessibility” requirements
suggested in section 3-1-1.

4-1-2. Ease of Learning:70%

Current implementation of the content authoring relies on the text-based programming of HPML and
PHP objects. The base PHP object library minimizes user programmers' responsibility so that they
need to modify only input and output string handlers. Nevertheless, it would be controversial whether
object programming in PHP language is an easy way for normal users who are unfamiliar with
programming. While PHP has larger user group than other web script languages and abundant online
resources are available for PHP programmers, it would be better to provide visual tools with novice
programmers. However, in so far as the representational method of hyperplace is textual HPML and
hyperplace object has access to the open Web resources, the textual programming method provides
more flexibility and versatility than the indirect visual programming tools. Thus, visual tools should be
developed as an auxiliary tool to support codeless, instant creation of objects.

4-1-3. Decentralization: 80%

Each HyperPlace servers are identical in terms of system architecture. They all have the same base
object library and execute the same main server code. Only mobile objects move from a server to
another. In this sense, it is basically a “decentralized” and “distributed” system just like Web. However,
the cross-reference of objects between servers requires the Global Location Service (GLS) as
introduced in section 3-2-3. It functions as a real-time DNS (Domain Name Service) for distributed
objects. By objects' real-time mobility, it is difficult to duplicate and synchronize data entries in one
GLS to another server. For this reason, the prototype has only one GLS server. This also need to be
decentralized and distributed over the network in the future.

52 Difference-based data compression is a heuristic algorithm, so the actual volume of traffic may vary according to content.

4-1-4. Real-time Interactivity:100%

Unlike HTTP, HPSP is a connection-keeping protocol on which full-duplex communication can be set
up. The prototype fully implemented the specification of the protocol, and thus satisfies the
requirement of “real-time interaction” including real-time chat and event handling (see section 3-2
and 3-4).

4-2. Technical Problems
While the prototype showed the overall feasibility of the system, the shortcomings of the current
approach also became apparent throughout it. Particularly, following technical problems are
exceptional ones that conflict with the design philosophy of the platform. It is the goal of next revision
of the HyperPlace to solve these problems without sacrificing ideologies of the platform.

4-2-1. Security

The current real-time programming environment of the HyperPlace can not distinguish a malicious
hackers' (or crackers') code from an innocent content creators' code. Since user programmable mobile
objects have the right to access the resources of the operating systems they are running on, they may
be used to spread spywares53 or viruses. Their versatility and mobility will certainly worsen the
situation if used for malicious purposes.

In order to protect the system from the attack of malicious objects, the platform must have a
mechanism that verifies access level of each object and limits individual operations. For example, the
security sandbox54 model used for Java and Flash platform may be applied to the HyperPlace.
However, the sandbox typically provides a tightly-controlled set of resources for guest programs to run
in, such as disk and memory. Network access, the ability to inspect the host system or read from input
devices are usually disallowed or heavily restricted. In this sense, enhancing security through
virtualization (abstraction of computer resources) significantly limits freedom and functionality of the
object programs.

4-2-2. Load Balancing

Another technical challenge is to load balance distributed hyperplace servers where all the objects on
the network can instantly move to and crowd in a specific server at a given time while all the other
servers remain idle. This difficulty of load balancing is counterbalanced by the advantages of local
communication (discussed in section 3-5-3).

When a crowded server crashes or fails to respond to clients due to heavy volume of internal
operations, the owners of the objects can not access their own objects since the object files are
currently stored in the local file system of the crashed server. While previous servers keep the last
status of the objects before they move to the current server, modifications made in the crashed server
are lost. Hence, it is important for servers to balance load and maintain idle process time to serve
incoming requests promptly.

In order to balance load and maintain idle time, each HyperPlace server should keep monitoring their
status and limit the entrance of incoming objects when their system load exceeds a certain percentage
of the maximum capacity. Theoretically, this policy works well for an evenly distributed network,
which seldom exists in reality. It may significantly limit the mobility of the hyperplace objects because
it will probably block the entrance of “the most visited places.”

Therefore, an efficient distributed hosting (hosting a hyperplace by multiple servers) method should
be developed to balance load among servers.

53 Spyware is computer software that is installed surreptitiously on a personal computer to intercept or take partial control
over the user's interaction with the computer, without the user's informed consent.

54 http://en.wikipedia.org/wiki/Sandbox_(computer_security)

http://en.wikipedia.org/wiki/Sandbox_(computer_security

CHAPTER 5.

APPLICATIONS OF THE HYPERPLACE PLATFORM
As mentioned in chapter 1 and chapter 3, hyperplace media and the HyperPlace platform naturally
constitute an online collaboration site. They can also be used for building a virtual world. This chapter
covers further considerations to be taken while building such applications on the HyperPlace. As
hypertext and the Web does not limit the range of applications, it is not necessary to confine the type
or genre of the possible contents on a generic media platform. Nevertheless, a few additional
applications are introduced here in order to highlight the uniqueness of the HyperPlace platform
compared to legacy media platforms.

5-1. CSCW/CSCP Environment

One of the most primitive forms of hyperplace constitutes a multi-user chat environment with
controllable avatars. Such real-time group communication environment can be utilized as an online
community space without significant modification. In order for this basic hyperplace to be used as a
CSCW environment, data storage and tools for workflow management must to be added. It is possible
to create a hyperplace object that stores and transfers data (or documents). Such objects may be
visualized as documents, books, folders, or a container box. In this case, the hyperplace also functions
as a GUI of the CSCW system. For instance, moving a document into a box may actually move the
corresponding document file to a specific location. Typical CSCW workflow also requires a non-visual
information management system to control schedules, resources, and members. These invisible
entities can be implemented by modifying the "place" object, where the global logic of the hyperplace is
programmed. (See chapter 3-5). It is also possible to extend an existing Web-based CSCW system. If a
CSCW system is already implemented on the Web, hyperplace can integrate with it through a
Javascript interface (See section3-2-1). In addition to textual collaboration systems, hyperplace
visualizes activities related to documents. Studies on CSCW environment have shown that by
visualizing collaborator behavior, social translucency is enhanced and usability of the system
improves. [xxx] [xxxi]

Another social application of such a collaborative place is an environment for CSCP (Computer
Supported Cooperative Play). Collaboration platforms usually serve co-workers, not co-players. It is
for this reason that the term CSCP is used less frequently than CSCW. Collaboration requires players
to have cooperative minds rather than competitive attitudes, a principle employed in most game
narratives. From this aspect, CSCP is different from most of the multiuser online games. It is more
closely aligned to Olderber's idea of the “third place” xxxii in which an individual's individuality and
personality are celebrated.

In CSCW, as an extension of real life, work role is particularly important and therefore self-in-the-
world is closely connected to the online embodiment of self. In CSCP, self-in-the-world and the online
embodiment of self are less tightly coupled and less constrained by fixed roles and identities such as
those of the "workplace". Therefore, CSCP environments support a more fluid and organic sense of
self. This is illustrated by the fact that, in CSCP, many instances of role-playing and multiple identities
have been reported. [xxxiii]

Building CSCP environments does not require prototypical functions. Rather, It is about maintaining a
playable mode, a task that demands more flexibility than a format. In this regard, a player-driven
hyperplace is a technically appropriate medium to build such online third places.

5-2. Player-driven Virtual Worlds

In chapter 1-3, I defined hyperplace media as the building blocks of virtual worlds. Particularly,
hyperplace would be a good medium to build a player-driven virtual world where players can create
object, NPCs and events with maximum freedom. Yet, the current prototype of the HyperPlace
platform does not have a 3-D rendering engine that presents a realistic replica of the physical world. It
is possible to enhance the graphic engine, but run-time manipulation of larger amounts of data is more
challenging. By its dynamic programmable nature, prediction of incoming data is technically
impossible55, so it does not preload (pre-install) graphic data like other virtual world client programs.
All the data must be downloaded on the fly with minimum waiting time.

However, in building a more persuasive reality, the social aspect of a medium is more important than
its representational aspect. This is why players can deeply immerse themselves into purely textual
MUD, which has no visual representation but is relatively rich in communication features. Ironically,
graphical illusion is the only “fake” part of a virtual world because it can be built only through pre-
designed computer simulation. The “reality” of virtual worlds, on the other hand, emerges from
dynamic interactions among the human players inside them. The players coordinate and organize
communities and compete and cooperate with each other in order to struggle against fearful odds.
[xxxiv] These interactions are what really happen in the virtual environments, not simulated ones.
Through these social interactions, players reassure their identities reciprocally and reinforce the initial
weak sense of individual presence. [xviii]

5-3. Venue for Online Artwork

An increasing number of galleries in Second Life are exhibiting online artwork [xxxv]. Some artists such
as DC Spensley, known by his avatar name Dancoyote Antonelli, create artwork and exhibit it in only
in Second Life. They even sell their work in exchange for Linden dollars, which can ultimately be
exchanged for real currency. For them, Second Life is the venue where they work, install, exhibit, and
sell their artwork. As more artists live and work in a digital landscape, the display of online art in a
virtual world may develop into a new genre of art.

Artists can take advantage of open connectivity when they craft their artwork on the HyperPlace
platform. Since hyperplace objects are written in PHP script language and the output canvas is a Web
browser, they can be easily integrated with numerous Web APIs and mash-ups. Most widely used Web
mash-ups and APIs include geographical databases, photographs, and social networks. For example,
an artist may create an interactive artwork that utilizes relevant photographs or the social network of
an audience.

Unlike online venues in a proprietary virtual world like Second Life, exhibition on the HyperPlace is
not restricted to its residents. Since these exhibitions run on normal Web browsers, they are sharable
and accessible to more people.

55 While the prediction is impossible, internal cache algorithm is implemented in the HyperPlace player client to minimize
data download time.

5-4. Interactive Theater

Drama consists of both characters and story. The concept of interactive drama contains a contradiction
in it since characters are played by autonomous online actors and story comes from an author's
intention. If the characters do not follow a predefined plot, the story cannot proceed as intended. Thus,
interactivity and narrative are not easily reconcilable. Ernst Adams stated that “interactivity is almost
the opposite of narrative; narrative flows under the direction of the author, while interactivity depends
on the player for motive power. [xxxvi])” As this statement implies, the most significant problem of
combining interactivity and narrative in a medium is maintaining a coherent narrative structure
within a player-controllable environment. This conflict is about freedom vs. control, bottom-up vs.
top-down, performance vs. representation, production vs. consumption, and relaxation vs. tension.

However, interactive drama can be defined in a completely different way. For example, it could be
defined as a live performance of role played by individual participants. This first-person participation
is what users can experience through virtual worlds. Suppose that there is a role-playing virtual
world and it automatically assigns a different role to each player. When agents in the virtual world are
given roles, quests, abilities, costumes, and items, all of which are aligned to characterize them, they
will become characters. Their individual pursuits of goals can be an open-ended story if their quests
and resources are designed to foster a dramatic structure (or a dramatic arc), for example, conflict
among characters. In this sense, most virtual worlds, including the HyperPlace, can become online
theaters for an improvised performance of interactive drama. In some interactive dramas such as
Michael Mateas' Façade, believable agents act like human characters [xxxvii]. The hyperplace “Agent”
object can be programmed to act like a believable agent with behavioral AI algorithms [xxxviii]. These
believable agents are better than human characters when they play some tedious and less-significant
characters such as gatekeepers. They can be also used to maintain the coherence of narratives by
preventing undesirable unfolding of the story or initiating events necessary to the narrative.

5-5. Multiuser Programming Environment
As described in section 3-5-5, multiple users can simultaneously program objects in the same
hyperplace. The programmers can communicate with each other and review each other's source code
in real time. This unique setting can be utilized to increase productivity. For example, “pair
programming” has been introduced as a way of practicing extreme programming [xxxix], a new software
development methodology that emphasizes team work and feedback to increase productivity. Pair
programming is a software development technique in which two programmers work together at one
keyboard. One types in code while the other reviews each line of code as it is typed in. The two
programmers switch roles frequently.[56] Thus, it is possible for two programmers to practice online
pair programming on the HyperPlace platform.

Sometimes, programming is a playful activity and programmers often absorb themselves in the world
of logical structure they are building. This highly productive yet enjoyable experience is what
Csikszentmihalyi calls “optimal experience” or “moment of flow.” [xl] In this sense, another application
of a multiuser programming can be named “Programming for Fun.” For example, programmers may
cooperate or compete with each other to create a stronger NPC creature that defeats other NPCs (or
user agents). In this case, the most enjoyable part is programming something very rapidly in a creative
way. This kind of creative fun has been already practiced on MOO platforms [xli].

56 http://en.wikipedia.org/wiki/Pair_programming

http://en.wikipedia.org/wiki/Pair_programming

CONCLUSION
In this paper, I introduced a networked, participatory medium called hyperplace, and the HyperPlace
platform that can be used by both content creators and players to build or utilize hyperplaces. The key
ideas of the platform include easy authoring of the virtual place, decentralized ownership, real-time
interaction, and mobility of code. The implemented prototype of the HyperPlace platform proves that
all the basic ideas of the hyperplace can be implemented on the Web platform without proprietary
software installation.

Meanwhile, the shortcomings of the current approach became apparent. System-wide problems
include security issue and load balancing as discussed in chapter 4. Its also has the limitation of
representing realistic graphics as described in section 5-2, which ultimately limits the type and quality
of the visual experience.

Next upgrade of this platform should be directed to tackle these technical challenges. I currently do
not have good ideas to solve (or improve) the limitation of the current system design. Yet, this project
will be open to community as an open source project with manuals. Web administrators who want to
host hyperplaces can freely download the project files and allow other players to come in and build
their own places and objects. As the hyperplace network grows and more people try to solve the
problems, better solutions would be suggested. It would be ideal if the platform itself can evolve by the
collective intelligence and better serve its content.

APPENDIX A. XML SYNTAX OF HPML
<place

id="globally_unique_id"

owner="[email_address]"

title="My First Placce (display)"

width="{pt}"

height="{pt}"

bgcolor="#cc6600"

 isometric="{false|true}"

originx="{pt}"

originy="{pt}"

stylesheet="[url]" />

<permission />

<background

src="[image_url]"

width="200"

height="100"

x="0"

y="0"

align="{left|center|right}"

valign="{top|middle|bottom}"

tile="{no|yes}" />

<sound

src="[sound_url]"

loop="{0|1|2|...|*}" />

<jscript method="func_name(parameters)" />

<keyboard

charcode="{none|all|specific_chracter}"

shortcut="{none|shift+z}"

handler="{server|client}"

menu="menu_id"

link="{place_url|http_url}"

linktarget="window_name"

jscript="js_function(parameters)"

controller="{all|owner|others}" />

<mouse

action="{rollover|rollout|leftdown|leftup|rightclick|dblclick}"

handler="{server|client}"

menu="menu_id"

link="{place_url|http_url}"

linktarget="window_name"

jscript="js_function(parameters)"

controller="{all|owner|others}" />

<menu

id="menu_id_unique_in_object">

<menuitem

+id="item_id_unique_in_menu"

+handler="{server|client}"

+title="take this"

icon="[url]"

link="{place://|http://}"

linktarget="window_name"

jscript="js_function(parameters)"

menu="submenu_id" />

</menu>

<object

id="globally_unique_id"

owner="[email_address]"

title="Nick name for (display)"

bgcolor="[color]"

width="{*|100}"

height="{*|100}"

x="20"

y="20"

z="20"

drag="{fasle|true}"

alpha="10%">

<img

src="[image_url]"

width="200"

height="100"

layer="{0|1|2|...}"

x="0 (relative)"

y="0 (relative)"

z="0 (relative" />

<canvas

x="0 (relative)"

y="0 (relative)"

z="0 (relative)"

width="200"

height="100"

bgcolor="[color]"

border="{false|true}"

bordercolor="[color]" >

<beginFill

color="[color]"

alpha="0...100" />

<clear />

<curveTo

contrlX="[coord]"

controlY="[coord]"

anchorX="[coord]"

anchorY="[coord]" />

<drawCircle

x="[coord]"

y="[coord]"

radius="30" />

<drawEllipse

x="[coord]"

y="[coord]"

width="30"

height="20" />

<drawRect

x="[coord]"

y="[coord]"

width="30"

height="20" />

<drawRoundRect

x="[coord]"

y="[coord]"

width="30"

height="20"

ellipseWidth="30"

ellipseHeight="20" />

<endFill />

<lineStyle

thickness="{0...255}"

color="[color]"

alpha="{0...100}"

pixelHinting="{false|true}"

scaleMode="{normal|none|vertical|horizontal}"

caps="{none|round|square}"

joints="{miter|round|bevel}"

meterLimit="{1...255}" />

<lineTo

x="[coord]"

y="[coord]" />

<moveTo

x="[coord]"

y="[coord]" />

</canvas>

 <video

src="[video_url]"

width="200"

height="100"

layer="{0|1|2|...}"

x="0 (relative)"

y="0 (relative)"

z="0 (relative"

repeat="{1|2|...|*}" />

<sound />

<keyboard ... />

<mouse ... />

<menu ... />

<call ... />

<text

x="0 (relative)"

y="0 (relative)"

z="0 (relative)"

width="200"

height="100"

bgcolor="[color]"

bordercolor="[color]"

align="{none|left|center|right}"

color="[color]"

font="face name"

size="face size"

bold="{false|true}"

italic="{false|true}"

underline="{false|true}"

stylesheet="[url]"

wordwrap="{false|true}"

target="{_self|_blank|...}"

url="[url]"

feature="open_window_feature" >

<![CDATA[content (HTML tags)]]>

</text>

<chat

alpha="[percent]"

stylesheet="[url]" >

<![CDATA[content (HTML tags)]]>

</chat>

</object>

</place>

APPENDIX B. HPSP PROTOCOL SPECIFICATION
HPSP protocol syntax is similar to XML-RPC. Both request commands and responses are formatted
with XML tag syntax: <command parameter=”value” />

command parameters description response

ready <none> handshaking signal <none>

test <none> test connectivity <test value=”OK” />

policy-file-request <none> Flash sandbox
security check

policy file (xml)

event type=mouse,
keyboard, ...
value=left, right, ...
target=object_id

send a client event
to an object (or a
place)

<none>

create id=object_id
template=file

create a new object <create
id=”object_id”
result=”success|
failure”
reason=”...”>

delete id=object_id delete an object <delete
id=”object_id”
result=”success|
failure”
reason=”...”>

view id=object_id View object source
code

<view id=”object_id”>

<![CDATA[content
(object source
code)]]>

</view>

checkin id=object_id
value=new_source

check-in modified
object code

<checkin
id=”object_id”
result=”success|
failure”
reason=”...”>

checkout id=object_id check-out an object
code

<checkout
id=”object_id”
result=”success|
failure”
reason=”...”>

login id=user_id
password=md5hashed

login as a specific
player (and avatar)

<login
id=”object_id”
result=”success|
failure”
reason=”...”>

logout id=user_id logout <logout
id=”object_id”
result=”success|
failure”
reason=”...”>

enter place=place_id enter a specified
hyperplace

stream of HPML

bye <none> logout and close
connection

<none>

APPENDIX C. SAMPLE HYPERPLACE OBJECT CODE

Sample 1. audio object

Following code is for an audio object that players can turn on by clicking it. When turned on, it
bounces on the floor and plays an MP3 file.

<?php

class audio extends _object

{

 public function initProperties()

 {

 parent::initProperties();

 $this->x = 200;

 $this->y = 10;

 $this->z = 0;

 $this->width = 19;

 $this->height = 19;

 $this->depth = 20;

 $this->title = "";

 $this->img = array();

 $this->img[0] = getImgPath("audio_off.gif");

 $this->img[1] = getImgPath("audio_on.gif");

 $this->audio = getSoundPath("reflection.mp3");

 $this->playing = 0;

 $this->direction = 1;

 }

 public function draw()

 {

 $xml = singleTag("img", "src", $this->img[$this->playing], "x", 0, "y", 0);

 if ($this->playing)

 {

 $xml .= singleTag("sound", "src", $this->audio, "loop", "1");

 $this->z += $this->direction;

 if (($this->z > 20) || ($this->z < 0)) $this->direction *= -1;

 }

 return $xml;

 }

 function handleEvent($eventType, $eventValue)

 {

 if ($eventType == "click")

 {

 if ($this->playing) $this->playing = 0;

 else $this->playing = 1;

 }

 return true;

 }

}

?>

Sample 2. a networked object

Following code constitutes a networked ball object that randomly moves in a place. It receives a color
value from another networked artifact, called gravitable made by Mark Roland, and reflects it to the
color of the ball.

<?php

class ball extends _npc

{

 public function initProperties()

 {

 parent::initProperties();

 $this->x = 250;

 $this->y = 150;

 $this->z = 0;

 $this->width = 40;

 $this->height = 40;

 $this->depth = 40;

 $this->title = "";

 $this->radius = 20;

 $this->direction = 4;

 $this->change = 1;

 $this->color = "#C0C0C0";

 $this->lastUpdate = 0;

 }

 public function draw()

 {

 $curTime = getSysTime();

 if ($curTime - $this->lastUpdate >= 10)

 {

$this->color =
file_get_contents("http://www.markroland.com/gravitable/demo/gravitable_hex.php");

 $this->lastUpdate = $curTime;

 }

 $tag = openTag("canvas", "x", 0, "y", 0, "width", $this->radius * 2, "height",
$this->radius * 2);

 $tag .= singleTag("beginFill", "color", $this->color, "alpha", 100);

 $tag .= singleTag("lineStyle", "thickness", 1, "color", "#000000", "alpha",
100);

 $tag .= singleTag("drawCircle", "x", $this->radius, "y", $this->radius, "radius",
$this->radius);

 $tag .= closeTag("canvas");

 return $tag;

 }

 public function simulateMove()

 {

 if ($this->radius > 15) $this->change = -1;

 if ($this->radius < 5) $this->change = 1;

 $this->radius += $this->change;

 $this->move(true);

 }

}

?>

i Yi-Fu Tuan, Steven Hoelscher, "Space and Place: The Perspective of Experience", University of Minnesota
Press, pp. 4-10 (February, 2001)

ii Steve Harrison & Paul Dourish, "Re-place-ing space: The roles of place and space in collaborative systems", In
Proceedings of CSCW 96, ACM Press, Cambridge, MA, pp. 67-76 (1996)

iii Jen Clodius, “Concepts of Space and Place in a Virtual Community”, http://www.dragonmud.org/people/jen/
space.html (1994)

iv Ruth M. Rettie, "Presence and Embodiment in Mobile Phone Communication", PsychNology Journal,
Volume 3, Number 1, pp. 16 – 34 (2005)

v Anthony Giddens, "The Constitution of Society: Outline of the Theory of Structuration", University of
California Press (March, 1986), pp.118-24; 132-5; 164-5; 366-8

vi Tom Boellstorff, Coming of Age in Second Life: An Anthropologist Explores the Virtually Human, Princeton
University Press, pp. 91-96 (April 21, 2008)

vii Richard Bartle, "Designing Virtual Worlds", New Riders Games, pp. 473-476 (July, 2003)
viiiBrian Winston, “Media, Technology and Society: A History - From the Printing Press to the Superhighway”,

Routledge, pp. 3-15 (April 1998)
ix Katie Hafner, Matthew Lyon, “where wizards stay up late: the origins of the internet”, Simon & Schuster, pp.

58-70 (January 21, 1998)
x Robert M. Metcalfe, David R. Boggs, "Ethernet: distributed packet switching for local computer networks",

Communications of the ACM archive, Volume 19 , Issue 7, pp. 395-404 (July 1976)
xi Saltzer, J. H., Reed, D. P., Clark. D. D., “End-To-End Arguments in System Design”, ACM ransactions on

Computer Systems, vol 2(4) (1984)
xii Tim Berners-Lee, “Information Management: A Proposal”, CERN,

http://www.nic.funet.fi/index/FUNET/history/internet/w3c/proposal.html (March 1989)
xiiiTim Berners-Lee, "Weaving the Web : The Original Design and Ultimate Destiny of the World Wide Web by

its Inventor", HarperOne; 1st edition, p. 37 (September, 1999)
xiv Tim O"Reilly, "What Is Web 2.0: Design Patterns and Business Models for the Next Generation of Software",

http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html (September 30,
2005)

xv Tim Berners-Lee, IBM developerWorks Interviews: "Originator of the Web and director of the World Wide
Web Consortium talks about where we"ve come, and about the challenges and opportunities ahead",
http://www-128.ibm.com/developerworks/podcast/dwi/cm-int082206.txt (recorded July 28, 2006)

xvi Don Tapscott, Anthony D. Williams, "Wikinomics: How Mass Collaboration Changes Everything", Portfolio
Hardcover; Expanded edition, pp. 67-71 (April, 2008)

xviiTodd Dagres, David Hornik, “Is Web 2.0 Another Bubble?”,
http://online.wsj.com/public/article/SB116679843912957776-
fF7CtrdMDTE4n1h5Ju5pv0HKhgM_20071227.html (December 27, 2006)

xviiiTim O"Reilly, "What Is Web 2.0: Design Patterns and Business Models for the Next Generation of Software",
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html, (September, 2005)

xixTiziana Terranova, "Free labor: producing culture for the digital economy", Social Text, 63, Vol. 18, No. 2, pp.
33-57 (2000)

xx David Harvey, “A Brief History of Neoliberalism”, Oxford University Press, pp. 154, 178-179 (September,
2005)

xxiVincent-Antonin Lepinay, “Economy of the germ: Capital between accumulation and hybrid in Psychologie
Economique, Economy and Society”, Volume 36, Issue 4, pp 526 – 548 (November 2007)

xxiiKarl Marx, “Capital: Volume 1: A Critique of Political Economy”, Chapter 26, Penguin Classics (May 1992)
xxiiiDmytri Kleiner, Brian Wyrick, “InfoEnclosure 2.0”, Mute Magazine,

http://www.metamute.org/en/InfoEnclosure-2.0 (January 2007)
xxivYochai Benkler, “The Wealth of Networks: How Social Production Transforms Markets and Freedom”, Yale

University Press, pp. 60-63 (May 16, 2006)
xxvApple Computer Inc., "Hypercard Script Language Guide: The Hypertalk Language", Addison-Wesley (C);

2nd edition (December 1990)
xxviMichael Stini, Martin Mauve, Frank H.P. Fitzek, "Digital Ownership: From Content Consumers to Owners

and Traders," IEEE MultiMedia, vol. 13, no. 4, pp. 1-6 (Oct. 2006)
xxviiJonathan Schull, Mike Axelrod, Larry Quinsland, "Multichat: Persistent, Text-As-You-Type Messaging in a

Web Browser for Fluid Multi-Person Interaction and Collaboration," hicss, p. 60, Proceedings of the 39th
Annual Hawaii International Conference on System Sciences (HICSS'06) Track 3 (2006)

xxviiiLingnau A., Drobnik O., Domel P., "An HTTPbased Infrastructure for Mobile Agents", WWW Journal - 4th
Intern . WWW Conf. Proc. , Boston, MA (December 1995)

xxixFuggetta, A., Picco, G.P., Vigna, G., "Understanding code mobility", Software Engineering, Volume 24, Issue

http://www.metamute.org/en/InfoEnclosure-2.0
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://online.wsj.com/public/article/SB116679843912957776-fF7CtrdMDTE4n1h5Ju5pv0HKhgM_20071227.html
http://online.wsj.com/public/article/SB116679843912957776-fF7CtrdMDTE4n1h5Ju5pv0HKhgM_20071227.html
http://www-128.ibm.com/developerworks/podcast/dwi/cm-int082206.txt
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.nic.funet.fi/index/FUNET/history/internet/w3c/proposal.html
http://www.dragonmud.org/people/jen/space.html
http://www.dragonmud.org/people/jen/space.html

5, pp. 342 - 361 (May 1998)
xxxMark S. Ackerman, Brian Starr, "Social Activity Indicators: Interface Components for CSCW Systems",

Proceedings of the ACM Symposium on User Interface Software and Technology (UIST’95), New York: ACM,
159-168 (1995)

xxxiThomas Erickson, Wendy A. Kellogg, "Social Translucence: Using Minimalist Visualizations
of Social Activity to Support Collective Interaction", Designing Information Spaces: The Social Navigation

Approach, Springer; 1 edition, pp. 17-43 (January, 2003)
xxxiiRay Oldenburg, "The Great Good Place: Cafes, Coffee Shops, Bookstores, Bars, Hair Salons, and Other

Hangouts at the Heart of a Community", Da Capo Press; 3rd edition (August, 1999)
xxxiiiGreg Wadley, Martin Gibbs, Kevin Hew, Connor Graham, "Computer Supported Cooperative Play, Third

Places and Online Videogames”, Proceedings of the Thirteenth Australian Conference on Computer Human
Interaction, University of Queensland, pp 238-241 (2003)

xxxivRaph Koster, "Theory of Fun for Game Design", Paraglyph; 1 edition (November, 2004)
xxxvCaroline McCaw, “Art and (Second) Life: Over the hills and far away?”, digital arts and culture conference,

issue 11 (2007)
xxxviErnst Adams, Three Problems for Interactive Storytellers. The Designer's Notebook

http://www.gamasutra.com/features/designers_notebook/19991229.htm (1999)
xxxviiMichael Mateas, Andrew Stern, "Façade: An Experiment in Building a Fully-Realized Interactive Drama",

In Game Developer's Conference: Game Design Track (2003)
xxxviiiMichael Mateas, "An Oz-Centric Review of Interactive Drama and Believable Agents", AI Today: Recent

Trends and Developments, Lecture Notes in Artificial Intelligence no. 1600, Springer-Verlag, Berlin, pp.
297-328 (1999)

xxxixKent Beck, Cynthia Andres, "Extreme Programming Explained: Embrace Change" Addison-Wesley
Professional; 2 edition, pp. 100-102 (November, 2004)

xl Mihaly Csikszentmihalyi, “Flow: The Psychology of Optimal Experience”, Harper Perennial, pp. 1-22
(February, 1991)

xli Amy Bruckman, “Programming for Fun: MUDs as a Context for Collaborative Learning”,
ftp://ftp.media.mit.edu/pub/asb/papers/necc94.ps (1994)

ftp://ftp.media.mit.edu/pub/asb/papers/necc94.ps
http://www.gamasutra.com/features/designers_notebook/19991229.htm

	HyperPlace: Extending Web Platform to Build Online Places for Multiuser Interaction and Collaboration
	ABSTRACT
	INTRODUCTION
	CHAPTER 1.
	CONCEPT OF HYPERPLACE
	CHAPTER 2.
	IDEOLOGIES OF THE INTERNET, WEB 2.0, AND HYPERPLACE
	CHAPTER 3
	DESIGN AND DEVELOPMENT OF THE HYPERPLACE PLATFORM
	CHAPTER 4.
	EVALUATION OF THE PROTOTYPE
	CHAPTER 5.
	APPLICATIONS OF THE HYPERPLACE PLATFORM
	CONCLUSION
	APPENDIX A. XML SYNTAX OF HPML
	APPENDIX B. HPSP PROTOCOL SPECIFICATION
	APPENDIX C. SAMPLE HYPERPLACE OBJECT CODE

